Search results for "Discontinuous Galerkin methods"
showing 6 items of 6 documents
IMPLICIT MESH DISCONTINUOUS GALERKIN FOR VARIABLE ANGLE TOW MULTILAYERED PLATES
2018
This works presents a novel computational scheme for variable angle tow (VAT) multilayered plates [1]. The characteristic features of the proposed scheme are the combined use of a discontinuous Galerkin (dG) formulation and an implicitly defined mesh. The formulation is based on the principle of virtual displacements (PVD) and the Equivalent Single Layer (ESL) assumption for the mechanical behavior of the VAT plates [2]. The problem is first placed within the dG framework by suitably introducing an auxiliary variable and by rewriting the set of equations governing ESL VAT plates as a firstorder system of differential equations. Following Arnold et al.[3] and by introducing suitably defined …
TRANSIENT AND FREE-VIBRATION ANALYSIS OF LAMINATED SHELLS THROUGH THE DISCONTINUOUS GALERKIN METHOD
2022
This paper presents a novel formulation for linear transient and free-vibration analysis of laminated shell structures based on Interior Penalty discontinuous Galerkin (DG) methods and variable-order through-the-thickness kinematics, whose combined use allows solving the shell problem with high-order accuracy throughout both the shell thickness and the shell modelling domain. The shell geometry is described via a generic system of curvilinear coordinates using either an analytical or a NURBS-based parametrization of the shell mid surface; the formulation also allows for the presence of cut-outs, which are implicitly represented by means of a level set function. After deriving the governing …
Modeling wave propagation in elastic solids via high-order accurate implicit-mesh discontinuous Galerkin methods
2022
A high-order accurate implicit-mesh discontinuous Galerkin framework for wave propagation in single-phase and bi-phase solids is presented. The framework belongs to the embedded-boundary techniques and its novelty regards the spatial discretization, which enables boundary and interface conditions to be enforced with high-order accuracy on curved embedded geometries. High-order accuracy is achieved via high-order quadrature rules for implicitly-defined domains and boundaries, whilst a cell-merging strategy addresses the presence of small cut cells. The framework is used to discretize the governing equations of elastodynamics, written using a first-order hyperbolic momentum-strain formulation…
Equivalent-Single-Layer discontinuous Galerkin methods for static analysis of multilayered shells
2021
Abstract An original formulation for the elastic analysis of multilayered shells is presented in this work. The key features of the formulation are: the representation of the shell mean surface via a generic system of curvilinear coordinates; the unified treatment of general shell theories via an Equivalent-Single-Layer approach based on the through-the-thickness expansion of the covariant components of the displacement field; and an Interior Penalty discontinuous Galerkin scheme for the solution of the set of governing equations. The combined use of these features enables a high-order solution of the multilayered shell problem. Several numerical tests are presented for isotropic, orthotrop…
A discontinuous Galerkin formulation for variable angle tow composite plates higher-order theories
2020
A discontinuous Galerkin formulation for the mechanical behaviour of Variable Angle Tow multi-layered composite plates is presented. The starting point of the formulation is the strong form of the governing equations, which are obtained by means of the Principle of Virtual Displacement, the Generalized Unified Formulation and the Equivalent Single Layer assumption for the mechanical behaviour of the whole assembly. To obtain the corresponding discontinuous Galerkin formulation, an auxiliary flux variable is introduced and the governing equations are rewritten as a first-order system of partial differential equations. To link neighbouring mesh elements, suitably defined numerical fluxes are …
A coupled discontinuous Galerkin-Finite Volume framework for solving gas dynamics over embedded geometries
2021
Author(s): Gulizzi, Vincenzo; Almgren, Ann S; Bell, John B | Abstract: We present a computational framework for solving the equations of inviscid gas dynamics using structured grids with embedded geometries. The novelty of the proposed approach is the use of high-order discontinuous Galerkin (dG) schemes and a shock-capturing Finite Volume (FV) scheme coupled via an $hp$ adaptive mesh refinement ($hp$-AMR) strategy that offers high-order accurate resolution of the embedded geometries. The $hp$-AMR strategy is based on a multi-level block-structured domain partition in which each level is represented by block-structured Cartesian grids and the embedded geometry is represented implicitly by a…